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a b s t r a c t

This paper presents some numerical methods to simulate the evolution of coherent struc-
tures with small fluctuations, that appear as typical solutions of a class of nonintegrable
nonlinear Schrödinger equations. The construction of the methods is particularly focused
on two points: on one hand, the generation of the ground state profiles, to be used in
the initial data of the simulations, combines a suitable spatial discretization with the res-
olution of a discrete variational problem. On the other hand, the approximation to leading
parameters of these structures is controlled by the time integration. We compare different
methods when simulating the evolution of initial ground state profiles and some initial
data perturbed from them.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The purpose of this work is the construction of numerical methods to simulate the dynamics of ground state solutions of
nonlinear Schrödinger-type (NLS) equations with homogeneous Dirichlet boundary conditions. The main points of the study
are the approximation to the initial ground state profile, the spatial discretization and the simulation of the parameters that
govern the angular velocity and the phase of the ground state evolution. The numerical experiments include simulations of
these ground states and of different perturbations.

The physical motivation of the paper is in the study of nonsingular wave turbulence in plasma and fluid models, governed
by different models [31,43–45]. Among them, those governed by focusing, free of wave collapse, nonlinear Schrödinger equa-
tions have a relevant role [16,25,32]. They include both integrable and not integrable cases.

All these physical phenomena point out the interest in studying the generation and persistence of coherent structures in
the models. From a numerical point of view, the simulation of the dynamics of these solutions contains some points of inter-
est, from which we emphasize three of them. The first one is the generation of an initial profile of the structure, which is
typically unknown and is sometimes associated to minimizing problems (see e.g. [18,13] and references therein). The second
one is the use of a suitable discretization in space, which takes into account the localized character of the structure and helps
to obtain the initial profile in a simpler way [6]. Finally, the evolution of these structures are sometimes governed by param-
eters which, at the same time, are related to some aspects of the dynamics, such as conserved quantities or symmetries. A
correct simulation of these parameters are in some sense associated to the choice of the time integration [26].

A good performance of the numerical method about these points may be also important in the study of the stability of
these structures, since many models predict that solutions trend to evolve towards coherent structures in a sea of small
. All rights reserved.
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turbulence or radiation [25,56,57]. An additional point of interest is then to study if the improvements of the methods, ob-
tained when integrating coherent structures, are retained when simulating perturbations or more general solutions. These
experiments make up a good test for the methods, since they may require a longer time of simulation and usually involve
perturbed structures that must be approximated in a proper way.

The present paper analyzes these problems for the case of NLS equations with homogeneous Dirichlet boundary condi-
tions. Many works in the literature deal with the numerical treatment of NLS models, for the initial value problem, the peri-
odic case or with different boundary conditions on a bounded domain, and including several dimensions. The spatial
discretization is carried out with different techniques, such as finite differences [23,65,61,62,1,34,53,58], finite element
methods [41,5,7,76], Fourier spectral methods and generalizations [68,71,10,11], Hermite expansions of the numerical solu-
tion [12] or methods based on the eigenfunctions of the operator �d2/dx2 [31,43–45]. On the other hand, the methods of
computation of ground states include, among others, Newton’s methods ([15] and references therein), Petviashvili’s methods
and generalizations [55,48,49,54], spectral renormalization methods [2], the use of a normalized gradient flow [9], Runge–
Kutta schemes [29] and direct minimization techniques of the energy functional [13,18]. Finally, the treatment of the time
integration covers finite-difference techniques (including symplectic methods, specific energy-preserving schemes, integra-
ble discretizations or linearly implicit methods, e.g. [41,61,62,65,23,1,4,59,58,69,75,34,53]), time-splitting techniques
[71,10–12] and explicit, time-staggered schemes [22].

The paper is structured as follows. We shall begin, in Section 2, with a description of the NLS model considered. The prop-
erties we emphasize are the general nonintegrable character of the problem, its conserved quantities and the way to obtain
the ground states. Section 3 is devoted to the description of the numerical techniques to approximate the problem. The spa-
tial discretization is based on cubic finite elements, takes advantage of the localized character of the ground states and is
used to generate the initial ground state profile in a suitable form. On the other hand, the choice of the time integrator takes
into account the preservation, through the numerical evolution, of discretized versions of the invariant quantities of the
problem. Finally, some numerical experiments are discussed in Section 4. Here we take a cubic nonlinearity as a model. With
the choice of this relevant case we also wish to show that the discretizations previously described add some computational
advantages to the implementation of this problem (which will be explained at the beginning of the section). But we empha-
size that other nonlinearities can be treated. The numerical results are divided into two groups. The first one concerns the
simulation of ground states, from approximated initial profiles, obtained by our technique. They allow to establish a first
selection of the methods, specially as far as the time integrator is concerned. The second group of experiments studies
the behaviour of the numerical schemes when simulating perturbations of ground states, with a long time of integration.
Its goal is analyzing if the methods with a better performance when approximating ground states retain this good behaviour
in perturbed solutions. A particular attention is paid to the simulation of the parameters of new structures that emerge from
the perturbations.

2. Description of the model

We consider nonlinear Schrödinger equations on a bounded interval [0,L] with homogeneous Dirichlet boundary condi-
tions of the form:
iWt þWxx þ f ðjWj2ÞW ¼ 0; t > 0; 0 6 x 6 L;

Wð0; tÞ ¼ WðL; tÞ ¼ 0; t > 0;
Wðx;0Þ ¼ UðxÞ; 0 6 x 6 L;

9>=>; ð1Þ
where W = W(x, t) is complex and f is a real function which represents the nonlinear term. The equation in (1), either one or
multi-dimensional, appears in many physical applications, such as waves in plasmas and propagation in optical fibers
([66,16,3,67,38,40,39,47], among others). The particular case given by f(x) = x corresponds to the classical cubic Schrödinger
equation.

The nonlinearity f and the boundary conditions affect, among other properties, the integrable character of the equation.
Integrability is assured for the cubic case and the initial value problem or the periodic problem [74,73,50]. For other bound-
ary conditions, see e.g. [14,33] and references therein. In particular, for the Dirichlet problem and the focusing cubic case,
under certain conditions, the solution of (1) can be written in terms of the solution of a 2 � 2 matrix Riemann–Hilbert prob-
lem [33]. For other cases of nonlinear terms and boundary conditions, integrability is, to our knowledge, unknown, while it is
unknown for other cases of nonlinear terms or boundary conditions. In particular, we will assume that f is focusing, i.e. it
satisfies f(x) > 0,f0(x) > 0 for x > 0, in such a way that (1) is nonintegrable, free of wave collapse and with solitary wave solu-
tions. Under these assumptions, the Hamiltonian energy
HðWÞ ¼ 1
2

Z L

0
jWxj2dx� 1

2

Z L

0
FðjWj2Þdx; ð2Þ
where FðaÞ ¼
R a

0 f ðyÞdy and the particle number
NðWÞ ¼ 1
2

Z L

0
jWj2 dx ð3Þ
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are invariant quantities. The Hamiltonian structure of (1) is determined by H. Unlike the initial value problem or the periodic
case, the Dirichlet problem does not admit the spatial translations as a symmetry group. This implies the associated quantity
(sometimes called momentum)
Im
Z L

0
WWx dx
is not preserved by the solutions of (1).
Some works in the literature (e. g. [64,25,56,57,31]) suggest a soliton turbulence behaviour of solutions of the NLS model

for long times with different boundary conditions. The field W tends to form persistent coherent structures in a sea of small
turbulent fluctuations. In the focusing case, this coherent structure would have the form of a spatial localized ground state
[45,43,44]. Then a coherent structure would take the form
Wðx; tÞ ¼ UðxÞe�ikt ; ð4Þ
where U is the solution of the problem
Uxx þ f ðjUj2ÞUþ kU ¼ 0; 0 6 x 6 L;

Uð0Þ ¼ UðLÞ ¼ 0:

)
ð5Þ
In terms of the quantities (2) and (3), we can rewrite (5) as
dHðUÞ þ kdNðUÞ ¼ 0; ð6Þ
where d denotes the variational derivative. In fact, it is known that the functions U(x) are minimizers of the Hamiltonian
subject to a given value of particle number [72,35,45]. This means that U(x) is the solution of the variational problem
HðuÞ !min subject to NðuÞ ¼ N0: ð7Þ
Then (6) is the necessary condition of critical point, with k as the Lagrange multiplier. Notice that the ground state (4) con-
sists of a profile U, solution of (5), which rotates with angular velocity �k. Due to the symmetry group of (1) of gauge trans-
formations, each solution U of (5) defines an orbit of solutions
UhðxÞ ¼ UðxÞe�ih; h 2 R:
From any of these profiles as initial data, the corresponding ground state can be obtained by applying the one-parameter
group of rotations, with parameter kt; t 2 R. Then the functions
Wðx; t; h; kÞ ¼ UhðxÞe�ikt ¼ UðxÞe�iðktþhÞ; ð8Þ
make up a two-parameter family of ground states which are solutions of the problem (1). The parameter h represents a
phase.

3. Description of the numerical methods

Our search for improvements in the performance of numerical integrators to simulate ground states of (1), or perturba-
tions of ground states, is focused, as mentioned above, on three points: the spatial discretization, the generation of the initial
profiles and the simulation of the ground state parameters.

The numerical approximation is obtained by using the method of lines. That is, we consider separately the spatial discret-
ization and the time integration.

3.1. Spatial discretization. Cubic finite elements

We first introduce the spatial discretization. There are several possibilities, which include finite differences, spectral
or finite element methods (see the references in the Introduction). It is important for us to keep the geometric properties
of the solutions of (1) [20] and a natural discretization of the invariants (2) and (3). To this end, we take
V ¼ H1

0ð0; LÞ � X ¼ L2ð0; LÞðV is the Sobolev space of squared integrable functions in (0,L), with homogeneous Dirichlet
boundary conditions, whose weak derivative is also squared integrable) and we consider a weak version of (1): finding
uðtÞ 2 V such that
du
dt ;w
� �

þ ih@xu; @xwi ¼ ihf ðjuj2Þu;wi 8w 2 V; t P 0
uð0Þ ¼ u0:

)
ð9Þ
Then we take a parameter h of the spatial discretization and a family of finite dimensional spaces Vh � H1
0ð0; LÞ that approx-

imate V and are based on the finite element method. Given u0;h 2 Vh, an approximation to the initial condition u0, we obtain a
semidiscrete weak formulation of (1): finding uhðtÞ 2 Vh, such that,
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duh
dt ;wh

D E
þ ih@xuh; @xwhi ¼ ihf ðjuhj2Þuh;whi 8wh 2 Vh; t P 0;

uhð0Þ ¼ u0;h:

)
ð10Þ
In this paper, we define Vh as the space of Hermite piecewise cubic polynomial functions, which are continuous and with
continuous derivative, and satisfying homogeneous Dirichlet boundary conditions. This choice was considered and justified
in [6]. If we take h = L/J > 0 with J 2 N, xj = jh for 0 6 j 6 J, let frjgJ�1

j¼1

S
ferjgJ

j¼0 be the shape functions that define a basis of Vh.
Then, an element Wh 2 Vh can be written as
WhðxÞ ¼
XJ�1

j¼1

WjrjðxÞ þ
XJ

j¼0

eWj erjðxÞ; ð11Þ
where, due to the choice of the shape functions, we have Wj = Wh(xj), 1 6 j 6 J � 1 and eWj ¼ @xWhðxjÞ; 0 6 j 6 J.
According to this, we look for an approximation uhðx; tÞ 2 Vh, to the solution u(x, t) of (1), of the form
uhðx; tÞ ¼
XJ�1

j¼1

ujðtÞrjðxÞ þ
XJ

j¼0

eujðtÞerjðxÞ; ð12Þ
where uj(t), 1 6 j 6 J � 1 and eujðtÞ; 0 6 j 6 J are respectively the corresponding approximations to u(xj, t), 1 6 j 6 J � 1 and
@xu(xj, t), 0 6 j 6 J. The application of (12) into (10) leads to a system of ordinary differential equations
Rh
dU
dt
¼ MhU þ /ðUÞ; ð13Þ
where
U ¼ ½~u0;u1; ~u1;u2; ~u2; . . . ;uJ�1; ~uJ�1; ~uJ �T ;
Rh and Mh are symmetric matrices and /(�) represents the nonlinear term.
With this construction of the semidiscrete version, the canonical Hamiltonian structure is conserved and the discrete

Hamiltonian of an element Wh 2 Vh is given by
HðWhÞ ¼
1
2

Z L

0
jðWhÞxj

2dx� 1
2

Z L

0
FðjðWhÞj2Þdx;
that is, the discrete Hamiltonian is the exact Hamiltonian of the piecewise cubic polynomial Wh.
Similarly, the discrete particle number of an element Wh 2 Vh is given by
NðWhÞ ¼
1
2

Z L

0
jWhj2 dx
and it is also a conserved quantity of the problem (10).
Some other alternatives in the spatial discretization are possible. It is also of interest, in our opinion, to emphasize the fact

that the spatial discretization adapts to the localized character of the ground states. Since the basis of Vh is local, the repre-
sentation (12) is particularly suitable to identify the components of the solution, specially in ground state perturbations. This
is useful if, for instance, one is interested in filtering the fluctuations. A local basis would allow to identify those coefficients
affected by the turbulence more clearly.

3.2. Generation of initial profiles

The computation of ground states of nonlinear Schrödinger-type equations makes use of different approaches in the lit-
erature ([30,63,24,9] among others). They also include Newton’s schemes [15], fixed point iterations with stabilizing factors
or renormalization methods [55,2,48,49,54], techniques based on the direct minimization of the energy functional, by using
finite element methods [13] or a spectral representation of the solution into Hermite functions [18] combined, in both cases,
with Newton-like methods for the corresponding nonlinear minimization problem. All these works concern the computation
of ground state solutions of the corresponding initial value problem and include several dimensions.

In our case, a direct minimization of the energy functional is also considered, while the spatial discretization determines
the technique of computation of the ground states of (1). We also use, as in [13], finite element methods, but with a different
basis functions. We consider a discrete version of (7) and search for solutions Uh 2 Vh (that is, Hermite piecewise cubic poly-
nomial functions) of the discrete variational problem
HðWhÞ !min subject to wh 2 Vh; NðWhÞ ¼ N0; ð14Þ
where N0 is a constant value.
In practice, (14) can be numerically solved with a real, standard optimization algorithm. To this end, we consider formula

(11) and write Wj; eWj in the form Wj = vj + iwj, j = 1, . . . , J � 1, eWj ¼ ~v j þ i ~wj; j ¼ 0; . . . ; J. Then
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HðWhÞ ¼ eHðv1;w1; . . . ;v J�1;wJ�1; ~v0; ~w0; . . . ; ~v J ; ~wJÞ ¼ eHðv;w; ~v; ~wÞ ð15Þ
and similarly,
NðWhÞ ¼ eNðv1;w1; . . . ;v J�1;wJ�1; ~v0; ~w0; . . . ; ~v J ; ~wJÞ ¼ eNðv ;w; ~v ; ~wÞ;
where eH; eN are the expressions of N and H in terms of the nodal values of Wh. Thus, (14) can be rewritten as
eHðv;w; ~v ; ~wÞ !min subject to eNðv ;w; ~v ; ~wÞ ¼ N0; ð16Þ
which can be solved by means of standard algorithms. Notice that, in order to obtain sufficiently accurate numerical profiles,
(16) will usually involve a large number of variables. On the other hand, the parameter k, associated to the numerical profile,
can also be estimated, in an initial stage, by using the corresponding Lagrange multiplier.

3.3. Time discretization

We now analyze the time integration. Since the ground states are determined by the profile U and the angular velocity k,
a qualitatively good simulation depends on the accuracy in the approximation to these elements. In the previous subsection,
the way selected to generate the initial profile has been explained. On the other hand, for a correct simulation of k, the choice
of the time integrator plays a relevant role.

The preservation of discrete versions of invariant quantities of the problem through the numerical integration is very
present in the literature on time integration of differential equations as a desirable property for a method to be com-
petitive ([36,60,52,19] and references therein). Some recent results (see e.g. [28]) show that a better simulation of the
parameters of soliton solutions of the initial value problem for some nonlinear Schrödinger equations is related to
the preservation, through the numerical integration, of some invariants of the problem. This is obtained when studying
the time propagation of the approximation errors in time semidiscrete schemes. Explicitly, the time integration gener-
ates some secular components of the error, associated to parameters. Those methods that preserve discretized versions
of some invariants of the problem manage to vanish these secular terms. See [20] for an analysis of fully discrete
methods.

According to these arguments, we think that, in our case, the preservation of the invariants H and N by the numerical
solution must be, among others, a property to be taken into account when choosing the time integrator. Our idea consists
of choosing a first numerical method, paying attention to other requirements of the problem. Then this method is modified
to preserve the corresponding discrete versions of the invariants.

We first consider the simply diagonally implicit Runge–Kutta (SDIRK) method of order three and tableau
c A
bT ¼

3þ
ffiffi
3
p

6
3þ
ffiffi
3
p

6 0
3�
ffiffi
3
p

6
�
ffiffi
3
p

3
3þ
ffiffi
3
p

6
1
2

1
2

ð17Þ
This method is selected for various reasons. Notice first that, after the spatial discretization, the system (13) is oscillatory, so
implicitness is necessary. Since the matrix A is lower triangular and all the elements in the diagonal are identical, consid-
erable gain in computational cost is achieved when the implicit systems for the intermediate stages are solved at each step.
On the other hand, (17) will be modified below, in order to preserve (2) and (3). Notice then that the complex left half-plane
is included in the absolute stability region of (17). This property of A-stability (obtained by forcing the conservation of N and
H) implies the inclusion of arbitrarily large pure imaginary eigenvalues of the linear semidiscrete operator in (10) into the
stability region.

Other possibilities can substitute the method (17) [46]. Among them, time-splitting algorithms have been recently used
for the Schrödinger and cubic NLS equations. In the second case, the approximation of the initial value problem by methods
of order two and four is treated in [10,12]. The convergence of a Strang splitting method is analyzed in [51,17].

Other three time integrators, modified from (17) to include the preservation of the quantities, are considered. This pres-
ervation can be done by projecting the numerical approximation onto the manifold levels, defined by the functional H and N.
We make a brief description of this procedure in our case, see e.g. [36] for details. Let H0, N0 be constants and consider the
following three submanifolds of V:
M1 ¼ fW 2 H1
0 : HðWÞ ¼ H0g;

M2 ¼ fW 2 H1
0 : NðWÞ ¼ N0g;

M3 ¼ fW 2 H1
0 : HðWÞ ¼ H0; NðWÞ ¼ N0g ¼ M1 \M2:
Taking H0 = H(u0) and N0 = N(u0), the exact solution of (9) satisfies uðtÞ 2 Mi; i ¼ 1;2;3. The idea is to use a projection on
these submanifolds in order to assure that the numerical approximation conserves one or both invariant quantities. Suppose
that, for some i ¼ 1;2;3; Un 2 Mh;i ¼Mi \ Vh, where Un is the numerical approximation to u(tn) for some time discrete value
tn > 0. The following approximation Un+1 to u(tn+1), being tn+1 = tn + Dt, is carried out in the following way:
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(1) Compute eUnþ1 by means of the SDIRK method (17).
(2) Project the value eUnþ1 onto Mh;i to obtain Unþ1 2Mh;i.

The computation of Un+1 involves the resolution of a constrained minimization problem. For example, if we want to con-
serve the Hamiltonian (the case of the particle number is similar), we have to solve
keUnþ1 � Unþ1k !min subject to gðUnþ1Þ ¼ 0; ð18Þ
where gðUÞ ¼ eHðUÞ � H0; eHðUÞ is given in (15).
As far as the resolution of (18) is concerned, we consider the Lagrangian function
LðUnþ1;lÞ ¼ keUnþ1 � Unþ1k2
=2� gTðUnþ1Þl:
From the necessary condition @L/@Un+1 = 0, we obtain the system
Unþ1 ¼ eUnþ1 þ g0ðUnþ1ÞTl;
0 ¼ gðUnþ1Þ;

ð19Þ
which can be efficiently solved for l by means of an iterative procedure. Notice that the computational cost of this one-
dimensional system is negligible, compared to that of the SDIRK method. Furthermore, due to the third order of the method,
the approximation eUnþ1, provided by (17), is a good initial value for the iteration. On the other hand, the case of a projection
ontoM3 can be described in a similar way, with the difference that in that case gðUÞ ¼ ðeHðUÞ � H0; eNðUÞ � N0Þ and, conse-
quently, l will have two components.

The inclusion of the projection technique in (17), to assure the preservation of the invariants, is simple to implement and
computationally cheap, since the iteration for (19) usually converges fast. For an analysis about the convergence of the pro-
jection technique, see e.g. [37,36] and references therein. In this context, the projection technique is also used in the approx-
imation to the cubic NLS with symmetric exponential integrators [21]. On the other hand, the splitting methods studied in
[51,17,70] preserve the corresponding particle number.

4. Numerical experiments

In this section we show some numerical experiments obtained with the methods previously explained. All of them are
carried out for Eq. (1) with f(x) = x, that is, we consider a cubic nonlinear term. Apart from its own interest, another reason
for this choice is that, in our case, after the spatial discretization, the exact formula for the nonlinear term in (13) can be
obtained, with some effort, by using symbolic calculus. Other nonlinearities can be implemented, and they would require
the use of numerical quadrature.

The experiments are divided into two groups. The first subsection will focus on the simulation of ground states, while the
second one will deal with experiments of perturbations of the initial profiles. In both cases, some comparisons between the
numerical methods will be carried out, in order to suggest the most competitive one in each case.

4.1. Simulation of ground states

The classical analysis in the numerical integration of differential equations, based on the construction of highly accurate
numerical methods, has to be complemented with the study of other properties when the time of simulation is longer. They
are related to the fact that, for long times, the numerical integration should take into account the correct simulation of some
geometric aspects of the system under study. This is part of the ideas behind the so-called geometric integration (see e.g.
[36]). The application of these ideas to our case implies that a good performance of the numerical method with respect to
the two elements that determine the ground state (the profile U and the parameter k) should generate a more proper sim-
ulation, in a qualitative sense, for long times. An additional point is the connection in the computation of U and k, due to (6).

Then, our first objective is to obtain ground state profiles which will be used as initial conditions in our numerical exper-
iments. To this end, we solve problems (16) with the numerical routine E04UCF of NAG Fortran 77 Library, Mark 19. This
routine is designed to minimize an arbitrary smooth function subject to constraints using a sequential quadratic program-
ming algorithm. More details on the routine may be obtained in [42]. All the profiles used in this paper were computed with
this NAG routine until the convergence was reached. The accuracy of the ground states profiles is also guaranteed by our next
numerical results.

We first consider problem (1) with L = 64 and cubic nonlinearity. The initial ground state profile uh,0(x), x 2 [0,64], shown
in Fig. 1, has been obtained by solving (16) with J = 2400; that is, uh,0(x) is a symmetric Hermite piecewise cubic polynomial
in a uniform partition of 2400 subintervals of [0,64]. The parameter k is initially estimated by the output value of the cor-
responding Lagrange multiplier in the resolution of (16), and it is approximately �3.5513497322095. This first estimate will
be improved later by using other techniques.

With this initial profile and the spatial discretization implemented as explained in Section 3.1, we simulate the evolution
of the corresponding ground state by using three time integrators: the SDIRK method (17), denoted by SD, its modified ver-
sion with a projection on the particle number manifold SDNP and the method (17) with a projection to preserve the Ham-
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Fig. 1. Ground state in [0,64] with J = 2400 subintervals.
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iltonian or SDHP method. In this case, it has not been possible to use the modified method with two projections, due to the
singular character of the Jacobian matrix in the iterative process for (19). The reason is in formula (6), which establishes a
dependence between the variational derivatives of the invariants at the ground state. This dependence also happens in the
corresponding discretization and with the numerical ground state profile, showing the accuracy in the resolution of (16).

In Figs. 2 and 3, we have computed, respectively, the real and imaginary part of the numerical solution given by SDNP,
from t = 0 to t = 1000, each fifty units of time. A modulated profile is observed.

The next numerical results are focused on the behaviour of the methods with respect to the invariants (2), (3) and the
influence of the conservation properties on the simulation of the ground state parameters.

As far as the first question is concerned, Fig. 4 shows, in logarithmic scale, the time evolution of the relative error in the
discrete approximations to N and H for the three methods above mentioned. In all cases, the time step is Dt = 2.0d � 2. Notice
that relative errors generated by SD are bigger and show a temporal evolution. This growth with time disappears in the case
of the other two methods. In the case of the two other schemes, Fig. 4 displays, for each of these two methods, the evolution
of the error of the approximation to the quantity which is not preserved by the corresponding numerical method. That is, we
measure errors in N for SDHP and errors in H for SDNP. We remark that the errors in the other quantity, due to the construc-
tion of the methods, are similar to precision used in the computation and they are not displayed.

It is of interest to notice that the two methods behave very well with respect to both quantities, even though they only
preserve (at least in theory) one of them. This can also be explained by formula (6) and emphasizes again the good approx-
imation provided by the initial profile (since an erroneous computation would affect the satisfaction of condition (16)).
Fig. 2. Ground state simulation. Real part of the numerical solution given by SDNP. The time step is Dt = 1.0d � 2. The wave is plotted each 50 units of time,
from t = 0 to t = 1000.



Fig. 3. Ground state simulation. Imaginary part of the numerical solution given by SDNP. The time step is Dt = 1.0d � 2. The wave is plotted each 50 units of
time, from t = 0 to t = 1000.
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Fig. 4. Ground state simulation. Time evolution in logarithmic scale of the error in the invariants H and N for the three methods. The time step is
Dt = 1.0d � 2.
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One of the consequences of the behaviour shown in Fig. 4 concerns the simulation of the angular velocity of the ground
state, governed by k. We carry out the computation of this parameter in two different ways. First, suppose that Uj,n denotes a
numerical approximation to the solution at ðxj; tnÞ; UðxjÞe�iktn ; then, at this value of time, k can be estimated as
k �
arg Uj;n�1

Uj;n

� �
Dt

ð20Þ
The accuracy of the approximation depends in practice on xj. We have obtained that, in our computations, the optimal choice
is xj = 32, where the maximum value of the discretized initial contour is achieved. Formula (20) is very cheap, in computa-
tional terms, and it can be easily implemented, but it requires a computation of the point where the approximation to the
modulus of the ground state reaches a maximum value.

An alternative algorithm to the approximation of the angular velocity k is as follows. Let Uh be the numerical solution
which approximates a ground state. From (6) we have
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dHðUhÞ þ kdNðUhÞ � 0:
Taking the inner product with Uh,
hdHðUhÞ þ kdNðUhÞ;Uhi � 0: ð21Þ
By using the definitions of N and H, condition (21) means that
Z L

0
ð@xxUhÞUh þ f jUhj2

� �
jUhj2 þ kjUhj2

� �
dx � 0:
For the cubic case, f(x) = x. The previous integral turns into
Z L

0
�j@xUhj2 þ jUhj4 þ kjUhj2
� �

dx � 0;
that is
�2HðUhÞ þ
1
2

Z L

0
jUhj4dxþ 2kNðUhÞ � 0;
which finally leads to
k � 1
NðUhÞ

HðUhÞ �
1
4

Z L

0
jUhj4dx

� �
: ð22Þ
Thus, formula (22) can also be used to estimate the value of k. In the following experiments, and according to the suitability
of the corresponding simulation, the alternatives (20) or (22) (or both) have been implemented, in order to study the influ-
ence of the time integrators on the simulation of k. In this sense, both techniques lead to similar qualitative conclusions, as
we will see below, but in some cases one of them is better than the other one. On the other hand, the approximation to the
parameter k may depend on the time t and the time step Dt. In the following experiments we will also analyze the contri-
bution of these variables.

With the same initial data as above and the estimate (20), the time behaviour of the numerical parameter for the three
methods is displayed in Fig. 5. This shows that the approximation to k given by SD grows with time (in an, apparently, linear
form) while the ‘conservative’ methods SDNP and SDHP simulate k without any time evolution. In addition, they give a very
similar approximation.

The constant in time behaviour of the simulation of k given by SDNP and SDHP enables us to use them to estimate the
angular velocity. It is also observed that this constant in time behaviour is independent of the step size. This can be seen
in Fig. 6, which shows the evolution with time of the approximation to k given by SDNP for Dt = 4.0d � 2, 2.0d � 2 and by
using both alternatives (20) and (22). It looks that both estimates of k converge to a well defined value. Moreover, the values
obtained with (22) seem to be better, although with bigger oscillations.
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Fig. 5. Ground state simulation. Evolution of k as function of time for the three methods. Dt = 2.0d � 2 and formula (20) are used.
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Once we have obtained a constant in time simulation of k by using the conservative methods, a second point that affects
the estimates of this parameter is the dependence on the time step size Dt, as Fig. 6 suggests. This will be discussed in the
following experiments.

We first mention Tables 1 and 2. Second column of Table 1 shows, with the method SDNP and for the values of Dt con-
sidered in the first column, the corresponding estimates of the value of k. In each case, this estimate has been obtained in the
following way: the method SDNP has been run up to a final time T = 200 and every unit of time, an approximation to k by
using formula (20) has been computed. Then, the corresponding estimate which appears in Table 1 is the mean value of these
approximations. The use of the mean value is justified by the fact that, by retaining the same accuracy, it achieves to rule out
the oscillations (see Fig. 6). On the other hand, the third column is obtained from the second one by using Aitken extrapo-
lation [8]. This is suggested in [27]. Finally, Table 2 shows similar contents, with the difference that (22) is used to compute
the approximations to k in the simulation, instead of (20).

Fig. 6 suggests some convergence of the approximations to a certain value of k as Dt goes to zero. By considering the last
extrapolated values in Tables 1 and 2 as references, Fig. 7 displays, in log–log scale, the errors as a function of Dt given by the
values of the second column of the corresponding table. Stars correspond to Table 1 and circles correspond to Table 2. We
observe that, in both cases, the slope of the lines suggests an O(Dt4) behaviour for the errors in the estimates, one more than
the order r = 3 of the method.

According to the theory explained in [28] (see also [26]), in this case the numerical experiments suggest the following
behaviour of the parameters h and k of (8) through the numerical integration. The numerical solution would contain a ground
state profile W(x, t,hn,kn) with parameters kn, hn which are perturbations of k, h, respectively, of the form
Table 1
Estimates of k obtained with (20): mean values (first column) and extrapolation (second column).

Dt Estimate Extrapolation

4.0d � 2 �3.57044930409735
2.0d � 2 �3.57419489201628
1.0d � 2 �3.57444597515882 �3.57446401569632
5.0d � 3 �3.57446183068545 �3.57446289942784
2.5d � 3 �3.57446281146187 �3.57446287613001

Table 2
Estimates of k obtained with (22): mean values (first column) and extrapolation (second column).

Dt Estimate Extrapolation

4.0d � 2 �3.57301675631360
2.0d � 2 �3.57436149583451
1.0d � 2 �3.57445626013480 �3.57446344449531
5.0d � 3 �3.57446246365797 �3.57446289820361
2.5d � 3 �3.57446286027564 �3.57446288736504
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hn ¼ hþ ðDtrÞ a1 þ b1tn þ b2
t2

n

2

� �
þ OðDtrþ1Þ;

kn ¼ kþ ðDtrÞða2 þ b2tnÞ þ OðDtrþ1Þ;
ð23Þ
for some constants ai, bi, i = 1, 2, that depend on the integrator used and with r the order of the method (r = 3, in our case).
This means that hn is a quadratic in time perturbation of the original phase, while kn differs from k in linear in time terms.
This would explain the behaviour of the method SD shown in Fig. 5 as follows. If we assume that the numerical solution is
approximately a ground state profile of the form (8)
Uj;n � /je
�ikntn�ihn ð24Þ
with hn, kn given by (23), then, after some calculations, the estimate (20) is of the form
1
Dt

arg
Uj;n�1

Uj;n

� �
¼ kþ ða2 þ b1ÞDtr þ Dtr 3b2

2
ðtn þ tn�1Þ þ OðDtrþ1Þ: ð25Þ
This gives the linear in time behaviour observed in Fig. 5 for the method SD.
The constant b2 would vanish when the method is conservative [28]. In that case, the perturbation in h would contain a

first O(Dtr) term, which only grows linearly in time, while the perturbation in k would include an O(Dtr) term, which is con-
stant in time. That is, (23) would be of the form
hn ¼ hþ ðDtrÞða1 þ b1tnÞ þ OðDtrþ1Þ;
kn ¼ kþ ðDtrÞa2 þ OðDtrþ1Þ:

ð26Þ
Now, (25) with b2 = 0 explains the constant in time behaviour shown in Fig. 5 for the other two methods and the information
suggested in Table 3 for the SDNP method. In both cases, the O(Dtr+1) terms would also depend on time, see [26,27] and ref-
erences therein.

The inclusion of the ansatz (26) in the computation of k can also explain the behaviour shown in Fig. 7. We will take, for
simplicity, formula (20) (the explanation for the other formula would be similar, although with a little more effort in the
calculations). If (24) is assumed again, then, using (26), the estimate (25) takes the form
1
Dt

arg
Uj;n�1

Uj;n

� �
¼ kþ ða2 þ b1ÞDtr þ OðDtrþ1Þ: ð27Þ
Now, the use of the mean value and the Aitken method in the computations does not change the behaviour given by (27).
Then, the comparison between these mean values and the estimate given by the last extrapolation forces the cancellation of
the first two terms in (27) and shows the O(Dtr+1) behaviour observed in Fig. 7 for the case of the method considered (with
r = 3). Thus, the numerical solution provided by a conservative method would be more suitable, in the sense that it remains,
for long times, closer to the ‘orbit’ of the solution.

An additional experiment illustrates these arguments. We have measured the differences, in maximum norm, between
this numerical approximation and the ground state form W(x, t) = U(x)e�ikt, with the profile U obtained by solving (16) as



Table 3
Differences, in maximum norm, between the numerical solution and the ground state form with
profile and velocity computed as in Section 4.1. SDNP with Dt = 1.0d � 2.

Time Real part Imaginary part Modulus

0 0 0 0
50 3.0496d � 6 3.1140d � 6 4.2612d � 6

100 1.6413d � 3 1.9690d � 3 6.6386d � 6
150 2.1613d � 6 2.4680d � 6 5.5271d � 6
200 5.0505d � 3 9.0602d � 4 8.3183d � 6
250 3.0024d � 6 1.0976d � 3 5.6365d � 6
300 6.6766d � 3 2.7484d � 6 6.0595d � 6
350 2.4075d � 6 6.8612d � 3 7.2930d � 6
400 3.5425d � 3 2.2341d � 6 6.8186d � 6
450 2.1937d � 6 1.1544d � 2 3.7512d � 6
500 3.6682d � 6 3.1516d � 6 4.0497d � 6
550 9.0218d � 3 1.0846d � 2 8.0120d � 6
600 2.8869d � 6 2.7226d � 6 4.1121d � 6
650 1.6407d � 2 2.9743d � 3 6.8096d � 6
700 2.5920d � 6 3.0319d � 3 3.7632d � 6
750 1.6715d � 2 2.5858d � 6 6.2369d � 6
800 2.6106d � 6 1.5646d � 2 6.3198d � 6
850 7.5855d � 3 2.9942d � 6 1.0886d � 5
900 2.4161d � 6 2.3087d � 2 4.9100d � 6
950 3.1456d � 6 3.7703d � 6 5.2884d � 6

1000 1.6355d � 2 1.9762d � 2 3.4916d � 6
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previously explained, and the parameter k computed with (20) at t = 1. The measures have been made each fifty units of time
and up to t = 1000. They are displayed in Table 3. First and second columns show, respectively, the differences in the real and
imaginary parts, while the third column corresponds to the comparisons between the modulus. The first two columns sug-
gest and oscillatory linear growth. The combination of these results with those of the third column shows that this growth
comes from differences localized in the phase.

4.2. Simulation of ground states with perturbations

The previous numerical experiments show that the simulation of ground states is more suitable when some properties of
conservation of invariants of the problem are included into the features of the time integration. Furthermore, the advantages
of the conservative methods are more relevant as the simulation is longer. This may lead to consider other situations where a
longer time of integration is necessary. In this section, we study if the conservation properties of the time discretization con-
tribute similar benefits in long time experiments involving ground state perturbations.

To this end, with the spatial discretization described in Section 3, we have used three different time integrators. First, the
nonconservative method SD has been ruled out since, as we have seen before, it did not provide good results in ground state
simulations any more. On the other hand, apart from the methods SDNP and SDHP, a third one has been designed, following
the projection technique described above, in order to preserve the two quantities N and H. It will be denoted by SD2P. Notice
that, since in the following experiments the initial condition will no longer be a ground state, then condition (6) does not
hold; thus the variational derivatives of the quantities at the initial condition are not proportional and the two projections
can be implemented.

In most of the numerical experiments to be shown in this section, initial profiles of ground states, generated by the tech-
nique described in Section 3, are subjected to small perturbations of different types. In these cases, the perturbed initial pro-
file evolves to a more or less stable structure along with a sea of turbulence of different intensity. The structure seems to be a
ground state, close to that of the unperturbed initial profile would generate. In this sense, the experiments confirm previous
results in the literature [25,56]. For this group of experiments, we will establish some comparisons between the three meth-
ods, to select the most competitive one for the corresponding simulation.

A typical experiment consists of studying the evolution of initial ground state profiles which are perturbed in their param-
eters. Recall that the main parameter in the construction of the ground states is the angular velocity k. An indirect way to
study the effects of its perturbations is to observe the evolution of ground state profiles which are initially perturbed in
the amplitude. As an illustration of this, in our case we have numerically integrated (1) for the cubic case with initial data
given by a multiplicative perturbation of a ground state of the form (1 + 10�3)Uh(x), where Uh(x), x 2 [0,64], is a solution of
(14) and is generated by the procedure described in Section 3.2. For this experiment, we will study the behaviour of the
methods with respect to the invariants of the problem and to the parameters of the perturbed ground state.

4.2.1. Evolution of small perturbations of ground states
According to the ideas explained in the previous subsection, we focus on the simulation of the profile and the angular

velocity of the emerging ground state. As far as the profile is concerned, the evolution of the perturbed initial data, with
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Fig. 8. Error between the modulus of the numerical solution at t = 5000 and the modulus of the initial profile. Left: SDNP and right: SD2P. The time step is
Dt = 1.0d � 2.
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any of the three methods, confirms the typical behaviour, above mentioned. By t = 5000, it is already clearly observed a
ground state structure into the numerical solution. In Fig. 8 we display, for the methods SDNP and SD2P, the difference be-
tween the modulus of the corresponding numerical solution at t = 5000 and the modulus of the perturbed initial profile, for
Dt = 1.0d � 02 (the method SDHP behaves like SDNP and this is not shown here). Note that the errors obtained are of the size
of 1.0d � 03. Then, we may consider the modulus of the corresponding numerical solution as the ‘exact’ profile and compare
with the corresponding approximation for longer times. The comparison reveals some differences between the methods
SDNP, SDHP and the method SD2P. Fig. 9 shows the difference between the modulus of the numerical solution, given by
the SDNP method (at the top of the figure) and the SD2P method (at the bottom), at t = 40,000 and t = 50,000, and the cor-
responding modulus at t = 5000, with J = 2400 and Dt = 1.0d � 2 (the method SDHP displays similar results to those of SDNP
method). We observe that the differences between the modulus are bigger for the case of the method SDNP. Fig. 9 also shows
an increase with time in the two figures at the top which does not appear in the figures corresponding to the method SD2P.

The study of the preservation of the invariant quantities through the numerical integration for this initial condition makes
evident some other differences between the methods. Fig. 10 shows the time evolution of the error in the Hamiltonian (the
scale is logarithmic) for SDNP and SD2P with J = 2400 and Dt = 1.0d � 2. As expected, the method SD2P ensures a constant
evolution of an almost imperceptible error. What is relevant here is the behaviour of SDNP, whose errors grow with time.
Then we observe that, for these perturbations of the parameters of ground states, it seems to be necessary to ensure the
numerical preservation of the two invariants of the continuous problem. This should be compared with the case of the sim-
ulation of an exact ground state, see Fig. 4. In that case, thanks to the condition (6), the preservation of one of the quantities
guarantees the virtual conservation of the other one. This does not happen in this case. We have also compared, for the same
initial condition, the errors in the quantity N for SDHP with a similar behaviour, since in this case errors in N grow with time.

This different behaviour also affects the estimates of the parameter k of the new ground state profile. Fig. 11 shows the
evolution of this parameter, computed with (20) and given by SDNP and SD2P. Observe that formula (22) is not suitable here,
since the initial data is not an exact ground state. Although in both cases the estimate of k is affected by noise, a different
behaviour is clearly observed. In the case of SDNP, the oscillations are growing in amplitude as time evolves, unlike the evo-
lution provided by SD2P. The information is summarized in Table 4, where we show the mean values and the maximum va-
lue of the oscillations for the estimates of k computed with SDNP and SD2P in the first and second half time interval of
computation. Notice that the values of k change more quickly with the SDNP method than with SD2P.
4.2.2. Evolution with small nonlinear structures
The previous numerical experiments show that, in order to study small perturbations of the parameters of ground states,

it seems advisable to consider two invariants preserving time integrators. We now study if this recommendation can also be
given with other types of perturbations.

The general conclusion is that in other cases, the differences between the methods (and, consequently, the advantages of
the numerical preservation of the two invariants) are not so clear. We have made computations with different perturbations
from initial ground states, including various types of noise, purely nonlinear ‘soliton’ and initial Gaussian structures. As an
illustration of all of them, we first consider the results obtained with an initial condition consisting of a ground state plus the
small regular perturbation with a local support centered in x = 16,
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10�3 exp
i
8
ðx� 16Þ

� �
sechð2ðx� 16ÞÞ; x 2 ½0;64�: ð28Þ
The discretization in space has been carried out as above with J = 2400. For the time integration we have considered the three
methods, SDNP, SDHP and SD2P. In each case the time step used has been Dt = 1.0d � 2. The evolution of this perturbed ini-
tial condition also follows, for the three methods, the usual behaviour previously described, with a coherent structure along
with small noisy oscillations. Our goal here is again to compare the three numerical schemes in the analysis of the perturbed
form.

The time evolution of the error in the Hamiltonian for SDNP and SD2P is displayed in Fig. 12. Notice that, although the
error for SDNP continues to grow with time, this growth is less pronounced than that of the perturbation studied in the pre-
vious subsection (compare with Fig. 10 at the same time of computation). This better behaviour of the method SDNP has
influence on the computation of the angular velocity parameter k of the emergent ground state. This is shown in Table 5,
where we notice that the difference between the two estimates for k given by the two methods is approximately 10�6, which
is much smaller than the size of the perturbation.
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Table 4
Mean values and maximum oscillations of k for a multiplicative perturbation of a ground state and methods SDNP, SD2P.

Method Time interval Mean value Max. oscillation

SDNP [0,25,000] �3.588754985013551 0.002832094837700
SDNP [25,000,50,000] �3.588750420406307 0.004699816136600

SD2P [0,25,000] �3.588758453331231 0.002354486698900
SD2P [25,000,50,000] �3.588760698083406 0.002482236264400
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Fig. 12. Time evolution, in logarithmic scale, of the error in the invariant H for perturbation with (28) and methods SDNP, SD2P. The time step is
Dt = 1.0d � 2.
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Finally, it has to be pointed out that, for this experiment, SD2P is computationally slower. The reason may be in the form
of the initial perturbation, which is of small size. This would imply that the perturbed solution does not separate very much
from the orbit of a ground state, where SD2P fails due to the condition (6).



Table 5
Mean values and maximum oscillations of k for a regular additive perturbation of a ground
state, t 2 [0,12,500].

Method Mean Max. oscillation

SD2P �3.574445113133648 5.412890256000225e�004
SDNP �3.574444631647461 5.776975272002716e�004

I. Alonso-Mallo et al. / Journal of Computational Physics 229 (2010) 8180–8198 8195
4.2.3. Evolution of an initial datum far from a ground state
We now study the problem with initial data far from a ground state. To this end, we consider
Fi
u0ðxÞ ¼
ffiffiffi
2
p

exp
iV
2

x
� �

sechðxÞ; x 2 ½�30;30�; ð29Þ
where V = 0.25. In the case of the initial value problem, the evolution of this initial condition would generate a soliton, trav-
elling with velocity V. However, for the problem on a finite interval and homogeneous Dirichlet boundary conditions, the
solution behaves approximately as such a soliton while it is far of the boundary and, when the solution arrives at the bound-
ary, it bounces into the interval.

The problem has been integrated with SDHP, SDNP, and SD2P. Fig. 13 shows, in logarithmic scale, the time evolution of
the relative error in the invariant N for the three methods considered. Notice that the results obtained for the methods SDNP
and SD2P are of the size of the precision used in the computation. Note also that, in the case of SDHP, the evolution grows
with time. We have made the corresponding computations with respect to the error in the Hamiltonian, instead of the par-
ticle number, and we observe that, in that case, the growth with time is observed when SDNP is used. In both experiments,
the best behaviour corresponds to SD2P. Therefore, the preservation of the two invariants seems recommendable for these
initial data.
4.3. Evolution of two ground states as initial condition

A final question we have studied is the behaviour of the methods when the solution contains more than one ground state.
To this end, the next experiment considers an initial condition consisting of a superposition of two ground states. For sim-
plicity, we have chosen two structures with the same norm, but centered in x = 16 and x = 32, respectively. This arrangement
allows to use (20) to compute the corresponding angular velocity parameters.

The form of the initial condition implies that the corresponding profile satisfies virtually two conditions of the form (6)
and, consequently, the time integration cannot be carried out with the method SD2P. The other two methods, SDNP and
SDHP, display a similar behaviour, which we explain by considering the results of the first one. The computations take
Dt = 1.0d � 2 and J = 2400.

The behaviour of the method is essentially like that of the simulation of a ground state. Errors in the Hamiltonian are very
small and almost constant during the simulation (see Fig. 14, which is run up to t = 30,000). The numerical solution shows a
great stability near the initial condition. Computations involving the angular velocity parameters of the emergent ground
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g. 13. Time evolution, in logarithmic scale, of the error in the invariant N for the initial condition (29) and methods SDNP, SDHP and SD2P.
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Fig. 15. Evolution of k with time for the experiment with two ground states. Estimates with (20) for x = 32. SDNP method.

Table 6
Mean value and maximum oscillation of k for the numerical solution with two ground
states as initial condition. Method SDNP.

Time interval Mean Max. oscillation

[0,15,000] �3.574445840625666 1.479130139969698e�005
[15,000,30,000] �3.574445881556593 1.658681879979085e�005
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states are displayed in Fig. 15 and Table 6. Both correspond to the ground state centered at x = 32 (the results at x = 16 are
very similar). Table 6 shows the mean values and the maximum oscillation for the time intervals [0,15,000] and
[15,000,30,000]. On the other hand, the time evolution of the estimate of k with SDNP is observed in Fig. 15. Both show that
the method, with only one projection, is still suitable for this kind of simulations, with more than one ground state, and the
profiles well separated.
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